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Director deformation of a twisted chiral nematic liquid crystal cell with weak anchoring boundaries
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On the basis of a generalization of the Rapini-Papoular expression [J. Phys. (Paris) Colloq. 30, C4-54
(1969)] for the anchoring energy, the rigorous expressions for the threshold and saturation fields are de-
rived analytically, in detail, for a field-controlled twisted chiral nematic slab with weak boundary cou-
pling. The surface anchoring energy of the Rapini-Papoular type for a twisted nematic slab should be
generally expressed as the interfacial energy per unit area for a two-dimensional deformation which is a
nonlinear combination of the azimuthal and polar angles. Applying a variational calculation method for
the two-dimensional problem to the total free energy, that is the sum of the bulk energy and the surface
energy, we derive general torque balance equations which describe the equilibrium deformation of the

director.

PACS number(s): 61.30.Cz, 61.30.Eb

I. INTRODUCTION

In liquid crystals (LCs), surface effects have been stud-
ied mainly for nematic phases [1]. The structure of liquid
crystalline phases in close proximity to an interface is
different than that in the bulk, and this ‘“surface struc-
ture” changes the boundary conditions and influences the
behavior of the liquid crystal in the bulk. The nematic
phase is especially sensitive to external agents, in particu-
lar, to surface forces [2]. Macroscopically, the surface
effects are manifested in the director orientation in the
bulk. There are two cases of particular interest: first, the
strong anchoring case, in which the director near the sur-
face adopts a fixed orientation ¢, which is called the an-
choring direction or the ‘“‘easy” direction as denoted by
de Gennes [3]; second, the weak anchoring case where
the surface forces are not strong enough to impose a
well-defined director orientation # at the surface; this is
the situation for the majority of systems. When there are
other fields (electric, magnetic, and flow) the director at
the interface obviously deviates from the easy direction.
To describe a weak anchoring surface for an untwisted
nematic liquid crystal (NLC) sample, Rapini and Papou-
lar (RP) have introduced a simple phenomenological ex-
pression for the interfacial energy per unit area for a
one-dimensional deformation [4],

gs‘—‘% sin%(8°—8,) .

Here 6, is the angle between the easy direction € and the
layer parallel while 6° is the orientation of the director at
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the nematic-wall interface. The anchoring strength pa-
rameter A determines the ability of the director to devi-
ate from the easy direction. For a twisted nematic (TN)
LC sample the RP anisotropic energy density for the
director orientation must be extended to the more general
form [1]

g, =——(ne?, (1)

A
2
which is a nonlinear combination of the azimuthal and
polar angles. Using the RP function, some authors have
studied the influence of the interfacial effect [5-12] on
the bulk orientation of NLCs and in this way attempted
to measure 4 [13—16]. However, in Refs. [5-12], the
unified RP energy form Eq. (1) has been written as a
linear combination of a polar angle anchoring term
g8o=(A4,/2)sin*(6°—6,) and an azimuthal angle anchor-
ing term g, =(4,/2) sin?(¢°—¢,). Although such a sep-
aration simplifies the mathematical analysis, there is no
physical reason to make a separation. In addition, from a
mathematical point of view, this linear combination is
not invariant with respect to rotation of the axis system;
therefore, the two optimum directions (6y,¢,) and
(6p, po+ ) in Refs. [S—12] are inconsistent with the origi-
nal intention of Eq. (1) that there is only one easy axis at
the surface. Although the expression for the surface en-
ergy can be predicted for other shapes of the surface po-
tential, such as the elliptic type, Legendre expansion, and
so on [2], it cannot be expressed as a sum of independent
terms g.(0) and g,(#) for the polar and azimuthal angles,
but is expressed by the two-dimensional function g,(6,¢).
Since the proposal of Eq. (1), the calculation of the field-
controlled director orientation in a twisted chiral nematic
(TCN) slab with weak anchoring has been an open ques-
tion for more than 20 years. Recently, on the basis of a
general RP expression for the anchoring energy, Eq. (1),
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two of us have reported briefly our results for the general
expressions for the threshold and saturation fields [17].
This follows from a rigorous treatment on the variational
problem with special variable boundaries. The method is
significant both for fundamental and the applied research
in the LC field.

In this paper, we describe the variational method for
the two-dimensional variation problem on the energy in-
cluding the bulk and surface energy, and give the detailed
derivation of our results reported in [17]. In Sec. II the
general torque equations are derived using a technique
based on the special functions. By using the general
torque equations the basic equations needed to calculate
the threshold field are derived in Sec. III. With a limiting
calculation for the equations obtained the result of the
threshold field is shown in Sec. IV. Following a similar
procedure to that in Sec. IV, we show the derivation of
the saturation field in Sec. V. Finally, Sec. VI contains
our conclusions.

II. GENERAL TORQUE BALANCE EQUATIONS

We first give the derivation of the general torque bal-
ance equation. We consider a nematic cell located be-
tween the two planes located at X;=0 and X; =, as il-
lustrated schematically in Fig. 1. The easy directions at
the top and bottom substrate surfaces are denoted by the
unit vectors ¢ and €, respectively. Using Eq. (1), the
corresponding surface energy densities are given by

+ A" 4
gr ==L X;=D, @
g;=—i‘2;(ﬁ~zf‘)2 (X,=0) , 3)

where A+ and A4 ~ are the anchoring strength at the top
and bottom substrate surfaces, respectively. The total
free energy density in the bulk may be expressed as [3]

X;=0 > X,
65 AN
& M e
X1

FIG. 1. The geometry of the twisted chiral nematic cell lo-
cated between the two planes X; =0 and X;=1/.

2
8= |kyy (Vi tky |7V X7+ 2T
2 Po
kg3 [AX(VXH)? | +g,(7) , @)

where k,;, k,,, and k;; are the splay, twist, and bend
elastic constants of the NLC, respectively, p, denotes the
pitch of the material induced by a chiral dopant, and
gs(#) represents the interaction energy between the
director and an external field which depends on # but not
on V7. The total free energy F is the sum of the bulk en-
ergy and the surface free energy

F= fgbdv-f-fg;ds'-%- fgs+ds+ , (5)

where dv is the volume element of the bulk and ds is the
surface area element. Minimization of the total free ener-
gy yields the stable director configuration. The equilibri-
um condition is then determined by the variation equa-
tion 8F =0. For many years the determination of the
equilibrium condition for a weak anchoring coupling has
been an unsolved problem because of the complicated
form of Eq. (5). No solution for a variational problem
under boundary conditions including integral forms can
be found in literature and books on the variational prob-
lem. In order to change Eq. (5) into a form which can be
solved by the normal variational approach, we introduce
two special functions, the unit step function

1 (X,2>0)
HX)=10 (x,<0),

and the Dirac function

o (X;=0)
3X3)= o (x,+0),
7 sxax,=1 |s8(x )= 2X)
e 3 dx, |’
Then Eq. (5) reduces to the unified integral
F=[" g*dv=[" (gf+g*)dv , (6)
where g5 and g* are defined by
&= |8+ (1=7) | [W(Xy)—p(Xs—D] ™
gr=—= A_(ﬁ’-?“)z-f-;z—(l—ﬁ’-ﬁ’) 8(Xs)

8(X;—D . (8)

+
A+(ﬁ’-€+)z+52—(l—ii-ﬁ)

Here v, £*, and £~ are Lagrange multipliers to be deter-
mined by the constraint #-#=1 in the bulk and at the
substrate surfaces. In previous work [10—12] on the same
problem, the Dirac function was used to unify the in-
tegral form of F;, however, the unit step function has not
been included because it was not necessary for the prob-
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lems being addressed. On the other hand, the normal
Euler-Lagrange approach used to minimize F is

g* D T _ i
an, _0X, om, ° (/7LD ©)
where n; ;=03n; /3X;. Substitution of Egs. (7) and (8) into

Eq. (9) leads to

ag, i) 98,
an, E an,, va | [ X3)—p(X3—1D)]
98 T
+|ms——A7(H-e€ e, —ETn; |8(X;—1)
on; 3
9g; e ey
_an,-,3_A (e e, —& n; |6(X5)=0
(10)
This leads to the following equilibrium conditions:
9, 3 | 9%
o6 ___O =vn. (0<X.<
on; 93X; |on;; vy (0SX3=D), an
)
B gt et T, (Xy=1), (12)
an; 3
ag, e — o
=—A(n-€ ), —§ n; (X3=0). (13)
an; 4

Equation (11) comes from the coefficient of the function
[u(X3)—u(X;—10)] of Eq. (10), and Egs. (12) and (13)
come from the coefficients of 8(X;) and 8(X; —1), respec-
tively. Equation (11) is the torque balance equation in the
J

k3, sin®@ cosg'V —

on; 5
—(k11+k33 Sinza)cosee(l) (i=3) ’

where 6'V'=d0/dX,, $''=d¢/dX,, and k,=

(k,, c0s?0+ k53 sin?0) cos@ singp' V) —
= {k335in’0sing0'" 4 (k,, cos?6+ k;, sin?) cosé cosdd' ) + k, cosd cosd (i =2) (16)

bulk. General surface torque balance equations at the top
and the bottom surfaces are given by Egs. (12) and (13),
respectively. Equations (11)-(13) and the constraint
7-n=1 determine the solutions for 7, v, and gi com-
pletely. The problem for a weak anchoring surface using

the RP function can now be solved generally.

III. BASIC EQUATIONS FOR THRESHOLD PROBLEMS

In the case of strong anchoring, the Fréedericksz tran-
sition gives us a simple method to determine the physical
parameters for NLCs by measuring the deformation in-
duced by an external magnetic or electric field. To un-
derstand the generalized torque balance equations de-
rived in Egs. (11)-(13) we may consider the threshold
problems of the Fréedericksz transition and the satura-
tion transition in the case of weak anchoring.

First, based on the general torque balance equations,
we derive the basic equations necessary to deal with
threshold problems. We consider simply a TCN cell lo-
cated between the two planes X;=0 and X;=I/ with a
symmetry with respect to the middle plane X;=1/2.
Then for any ¢, the symmetry, ¢(X;)=¢,—d(] —X3)
and O(X;)=6(]l —X3) in a range of 0 <X, </ /2, obtains.
The surface tilt angles are taken to be the same at both
surfaces, 8°=0(0)=06(l) and A =A1T=A4". The easy
direction € at X;=0 and the direction at the X; layer
may be expressed as

€=(cos0,,0,sinb,) , (14)

n =(cos0 cos@,cosd sing,sind) , (15)

where the azimuthal angle ¢ and the tilt angle 6 are func-
tions of X 5. With Egs. (4) and (15), dg, /9n; ; is given by

k, cosfsing (i=1)

—2mk,, /py, where positive and negative signs of k, correspond to left-

and right-handed helixes, respectively. Substitution of Eqgs. (14) and (15) into Eq. (13) leads to

ag,
s A neele. — .
a5 (r-€)e; —En;
— A (cosb cosb cos¢ +sinb sinf) cos@y—¢ cosO cosgp (i =1)
= {—¢&cosfOsing (i =2) (17)
— A (cosf, cosO cos¢ +sinb sinf) sinf,— & sinf (i =3) .
Elimination of § with Eqs. (16) and (17) gives the surface torque balance equations at X; =0 as
f(0)8V]x, —o= 4 (sin6,sin6+cosO, cosd cose )(cos B, sind cosd —sinf, cosd) , (18)
h(6)¢'V] x,=0= — k3 cos’0+ A (cos, cosd cosé +sind, sin6) cos, sing cosd , (19)
[
where tained simply by reversing the signs of the right-hand

f(6)=ky; cos?’0+ks;sin% ,
h (8)=cos?0(k,, cos’0+ ks, sin%0) .

The surface torque balance equations at X; =1 can be ob-

(20)

sides of Egs. (18) and (19).

When a magnetic field B—(O 0,B) is applied to the
TCN cell, ie., g, =—(Ax/2)(7" ‘B )2 in Eq. (4), with Eqgs.
(4) and (15) the free energy density in the bulk may be ex-
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pressed as

g,,=%[f(9)9(1’2+h(0)¢“’2]+k2 cos?6¢‘"

k2
2 _BXprgng, 1)

where Ay is the anisotropy of the diamagnetic suscepti-
bility of the NLC. Minimization of the free energy in the
bulk yields the stable director configuration for any given
field. Applying variational calculus to Eq. (21), we find
that the bulk equations (11) lead to

f(9)9(2)+%f99“)2—%h9¢m2

+2k, sinf cosf' '+ AyB?sinf cosd=0, (22)

¢‘”=Z(19—7(C1—k2cos26) ) (23)

whre C,; is a constant of integration, f,=df/d0,
ho=dh /d6, and 62 =d6'! /dX,. Subsitution of Eq. (23)
into Eq. (22) leads to the torque balance equation in the
bulk,

f(9)9“’2+7(15(c1—k2 cos?6)2+AyB?sin?0=C, ,
(24)

where C, is a constant of integration.

Applying a variational calculation to the total free en-
ergy for the two-dimensional problem described in the
preceding section, we find four equations describing the
equilibrium director deformtion. Equations (18) and (19)
are the boundary conditions due to the balance of the
torque for tilt and twist at X; =0, respectively. Equa-
tions (23) and (24) give the director orientation in the
bulk. Essentially, Egs. (18), (19), (23), and (24) are the
basic equations for solving the threshold and the satura-
tion problems analytically. The right-hand side of the
torque equations (18) and (19) are both functions of 6 and
¢, simultaneously. This is entirely different from the cor-
responding equations obtained in Refs. [5—-10] in which
one depends only on 6 and the other only on ¢. This
shows that the challenging problem for the present
analysis is to solve the complicated equations (18) and
(19).

Further calculation of Egs. (18), (19), (23), and (24)
may give us more useful forms to consider the threshold
problems. Substitution of Eq. (23) into Eq. (19) leads to

C,; = A (cosf,cos8 cos¢’

+sin6, sin@°) cosf, cos@’ sing? , (25)

where 6°=0(X;=0) and ¢°=¢(X;=0). Let us consider
the extreme condition for 6 at the midplane of the cell,

do
dx,

=0, . (26)

- L
x3=1/2_0 » 0 [2

Substitution of Eq. (26) into Eq. (24) leads to

1

= (C,—k, cos?0,,)*+AxB?sin’0,, . 27
K (0,)

&)

Substituting Eq. (27) into Eq. (24), we obtain
6'V=N"1%0), (28)

where N (0) is defined by

N(0)=f(6) |AxB?*(sin?0,, —sin?0)

R NP 29 2
+h(6M)(C1 kzcos GM)

1 s _ 202
h(G)(Cl k, cos 9).

With Eq. (26) the integration of Eq. (28) changes to

1_ Om 172
5 fgoN (0)d6 . (29)

On the other hand, Eqgs. (23) and (28) lead to

_ NV 2
de¢= 7 (0) (Cy—k,cos°0)dO . (30
If ¢, is the angle of twist from ¢(X;=0) to ¢(X;=1), the
symmetry with respect to X; =1/2 gives us the condition

Integration of Eq. (30) then leads to

0 172
%_ 0— ngM—N—h—(—(—;)e—)(Cl—kz cos?)do . (31)

Substitution of Eq. (28) into Eq. (18) gives

F(6°)N ~172(6°)= A (sin6, sin8°+ cosb, cos8’ cos¢4®)
X (cosB sin8° cos¢® —sinb, cos6®) .

(32)

Now for given values of ¢,, 6,, and B, it is clear that the
values of ¢°, 6% and 6,, can be determined completely
from the basic equations (25), (29), (31), and (32). Once
they are known, by using Eqgs. (28) and (30), we can ob-
tain the director deformation in the bulk, 6(X;) and
o(X3).
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IV. FREEDERICKSZ TRANSITION 1

[ S - 2 —
S= o i(e) UC1—ka P +2ka(Cr =)

To derive the threshold magnetic field By of the
Fréedericksz transition, we suppose that 6,=0 and X [h(6y)+1sin?6,,]
6°=6,,=0 for B <By and 6,,—0 when B—B,. With 5 ., s
these boundary conditions the limiting integrals in Egs. +k3[h(6,,)(sin’0,, +sin’0)

(29) and (31) can be solved analytically to give the rela- +sin®0,,1} ,
tionship between the threshold field and the anchoring
energy. We introduce a new variable a under the condi- $=[2ky, —ky3+ (k33 —ky, )(sin’6,, +sin’6)] ,
tion of 8 < 6,, such that kao—k
_ Kz 7Ky
sind=sinf,, sina (sinf°=sinh,, sina®) ; n ki

Eq. (29) then b
qg. (29) then becomes Taking the limit 0,,—0 at B =B, we have 6—0,

I f,/z Ky, (1+7sin%6,, sin’a) | h(0)—ky,, h—1Py=2k,, — k33, and Eq. (25) reduces to
2 a® AyB*+S
C,= A sin¢° cos¢® . (34)
_;:‘___2_ : (33)
V/1—sin Oy sin“a Then the integration of Eq. (33) can be performed analyt-
where ically to give
|
L=fw/2 ki I/Zda
2 Ja® | AxBE+kn [9o(Ci—ky 42k ky(Ci—k;)]
172
_|=_ ki 35
T g % 2,2 Y —
AXBr+ k" [$o(Cy—ky) +2k, k) (Cy—k;)]

With a similar process, Eq. (31) can be solved analytically and gives
172

¢, o_ |7 Ci—k, ki
5= |5 R : 6
2 2 ko, AXYBr+k " [Po(Cy— k) +2k k5 (Cy—k))]
The ratio of Eq. (36)/Eq. (35) leads to the relation
k
cl—k2=%(¢,—2¢°). 37
Equations (34) and (37) then lead to the important relationship between 4 and ¢°, namely,
b, —2¢°~2—7ﬂ=£ sing® cos¢® . (38)
Po ky,

Equation (38) may give us the simplest way to evaluate the anchoring strength. In other words, the anchoring energy
can be calculated from the measurment of ¢° as a zero-field technique.
Substitution of Eq. (37) into Eq. (35) leads to

1 [ AxB2+y(h, —28°2 /12 + 2k ($, —2¢%) 71 |
cota®=tan | — X . (39)
11
Equation (32) at B =B changes to
— (6,—2¢°7  dmkyy(h,—26°) |'7
A cos’¢’=1"k,, |AxBE+ Yo ¢t12 Y _ 2 Iit ¢ cota® . (40)
0
Elimination of cota® from Egs. (39) and (40) gives
R |12
A cos?’¢’=1"k ;R tan | — |— , (41)
where
(2ky —k33)(d, —26°7  4mky(h,—2¢°)
R =AyB2+ 22 1)@, —2¢ _ ATk ¢, —2¢ _ 42)

12 Ipo
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With Eq. (42), the threshold magnetic field By is given by

_ | PR +(8, —2¢°) (k33 — 2k (¢, —2¢°)+4mlky, /o]

172

F Ayl?

In Eq. (43), R and ¢° are the solutions of the transcenden-
tal equations (38) and (41).

In order to compare our results with previous studies,
we consider Eqs. (38), (41), and (43) for the threshold
properties. It is convenient to introduce the dimension-
less parameter

_17'k22
M

and also to use the reduced magnetic field u'=B/B,,
where

(44)

B,= %\/k“ /Ax (45)

is the threshold magnetic field for an untwisted nematic
slab (¢,=0) with rigid boundary coupling (A=0, i.e.,
A — ). In this limiting case of 4 — o (¢°—0 [see Eq.
(38)] and LV/I’R /k,;—m/2 [see Eq. 41)]), Eq. (43)
reduces to

172
k“7T2+(k33_2k22 )¢?+47le22¢t/p()

(46)

This recovers the result obtained by Becker et al. [11] un-
der the assumption of strong azimuthal anchoring and
the consideration of polar anchoring only. This is also
the result reported by Hirning et al. [12] in treating the
tilt anchoring and twist anchoring independently and
taking both anchoring strengths as infinite. In the case of
a twisted nematic cell with strong anchoring and p,— «,
Eq. (46) reduces to '

172
k11772+(k33 —2ky, )¢%
Ay ’

This is the same result as that derived by Leslie [5] as
well as by Schadt and Helfrich [6]. Furthermore, for the
homogeneous nematic (HN) slab with weak anchoring,
1/po=0 and ¢, =0, Egs. (38), (41), and (43) lead to

A=1"k, AxYB tan —;—v Ay /kqBp

’

which is the same result as that obtained by Rapini and
Papoular [4]. The agreements for these various limiting
conditions provide a good check on the present general
theory. However, in order to demonstrate the differences
between the present theory and previous studies, it is
necessary to consider other special cases.

(43)

For an isotropic surface (A— «, 4 =0), in other words
there is no anchoring energy for the director orientation,
we obtain from Egs. (38), (41), and (43),

2772

AxBi=ks;

This provides the reasonable result that the Fréedericksz
transition does not exist for a nematic slab (p,— ) cou-
pling with an isotropic surface.

We now discuss our present results in comparison with
previous results by using numerical calculations. Figure
2, in which we show the present results and those report-
ed in Ref. [11], shows the A dependence of the threshold
fields for a HN cell (¢,=0, I/p,=0), a twisted cell
(¢,=90° 1/py=0), and the supertwist slab ($,=270",
1/py=0.7) with the same material parameters as those
used in [11], i.e., k33/k;;=1.5 and k,,/k;;=0.6. In a
supertwist birefringent effect (SBE) cell the previous re-
port [2] shows that the ratio //p,=0.75 fits within the
layer thickness. In the present result, however, the ratio
may be less than 0.75 because of the effect of the pretwist
angle ¢° [see Eq. (38)]. So [ /p,=0.7 is used in our calcu-
lation for a SBE cell. The significance of the sign of
(k33—2k,,) in the threshold properties is apparent from
Eq. (46) as discussed in [9]. It is clear from Fig. 2 that
the results of the previous studies only give the correct
threshold fields in the limiting case of 4 — . The result
for a HN cell is same as that reported in Ref. [4].

25— —— 71— 71—
[ k3yk;=1.5 ]
2 wd)‘:h/z (l/p():O.?)—-
15

Becker et al. (¢=n1/2, Ups=0)]

= 1
1 K d=m/2 (Upo=0) , -

0.5 — /
[ /=0 (/p,=0)

0 [ L L " | s | .
0 1 2 3 4

FIG. 2. The A dependence of the reduced threshold fields #’
for homogeneous nematic, twisted nematic, and supertwist
birefringent effect cells. We show the present theoretical results
and those reported in Ref. [11]. The material parameters used
in the calculation are k33 /k{;=1.5 and k,, /k,; =0.6.
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V. SATURATION FIELD be solved analytically to give the relationship between the
saturation field and the anchoring energy. Introducing a

We can also derive analytically the saturation field By, new variable, B for 6,, in the range 7/2> 6,, > 0, given

above which the director becomes complely homeotropic. by
However, in actual calculations we have to overcome
some mathematical difficulties (see the controversy men- cosO,, o oSOy
tioned in Refs. [8—10] and Ref. [11]). cos0=""B8 ¢ cosp® |’
To derive the saturation field Bg, we need to suppose
6,=0 and 6,,—m/2 when B — Bg. With these boundary and with C,=q cos’6,, from Eq. (25) at 6,=0, Eq. (29)
conditions the limiting integrals in Egs. (29) and (31) can becomes
;
172
L=fﬁ° 1 _ f(8) . _ B, @7
2 o cosB | [AxB%+ W (0))(1—cos’8,, /cos’B)
where
—(g —ky)*—(147y cos?0y, ) —2g (g —k,)+g*sin’B
wioy=_—_‘9 "k 14 M) —2q(g —k;)+g ]

’

k33(1+7 cos?0,, )(1+7 cos?0,, /cos*B)

4= A cos¢sing’
- ’
cos?B°

y= ky—ks3 )
k33
In the limit 6, — 7 /2, Eq. (47) becomes I90=O,
1_ (F ks3dB ’ 4s) FOON120%) = 4 cos6’sin6’ cos?¢’ ,
2 0 cosBY Z%+q?%cos?B in the limit of 6, — 7 /2 and 8°—7 /2, leads to
where

sinB°V Z2+q?% cos’8°= A cos?¢° . (51)
Now for given values of ¢,, the values of By, ¢0, and B°

(i.e., 6% can be determined completely from Egs.
(49)—(51). Elimination of 8° in Egs. (49) and (51) leads to

The limiting integral of Eq. (48) can be obtained analyti-
cally as

sinf° 1

(49)

240 é—Z
- , 52
S A=) 52

where £2=( A /Z) tanh(IZ /2k ;). Equation (52) is an im-
portant equation which gives the relationship between By
and ¢°.

We now show the derivation of the relationship be-
tween Bg and A. Eliminating 8° and ¢° in Egs.
On the other hand, the boundary condition of Eq. (32) at (49)—(51), we obtain
]

With a similar process, in the limit of 8, — /2, the lim-
iting integral of Eq. (31) can be obtained analytically as

2’__ 0_ 7rlk22
2 Pok3;

q sinf8°
sz+q2

= —sin~! (50)

172 172
. A |74 A [V4
T)|1— = tanh - T) | = coth —1
sin(T) 7 tan 2k, ] ] cos(T) Z © T ]
1z A 1z
X |1+tanh? | =——— |—5-tanh |——— | |=0, (53
an 2kns ~ tan 2k ] 0 (53)
[
where T=¢, /2—mlk,, /(pyks;). Because the second fac- z 1z cosX T)
tor of Eq. (53) leads to an unreasonable result of — —tan ; . (54)
A 2k 2

tan?¢°= —1, only one reasonable solution is derived 3 sinh"[1Z /(2k3;)]
analytically with the first term of Eq. (53) to give the im- To discuss the saturation properties, as defined in Ref.

portant relationship between Bg and A as [11], we introduce a parameter
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21172

21k
- , (55)

uHZ
Poks;

Y=

Fu | _
k33

where the reduced saturation field u’ is defined as
u''=Bg/B,. With Egs. (44) and (55), we find that Eq.
(54) reduces to

cos¥(T)
sinh®(7Y /2)

Ksy
ki

_ tanh(7Y/2)

A Y

. (56)

Next we show the relationship between ¢, and Y. The
substitution of Eq. (54) into Eq. (52) gives

|sin2 T
tang’= . (57)
¢ 2[sinhX(7Y /2)+cos>T]
For TCN LC of very short pitch, where

[20ky, /(k33p) 1> — 1'%k, /K33 >0, Egs. (56) and (57) can
be rewritten as

k ' 2

Y AL tan(wY'/2), |, _ : 2cos 7'" (58)
k“ Y sin“(wY'/2)

tang®= |sin27]| (59)

2[cos®’T —sin® (7Y’ /2)] ’

where Y'=Y /i'=V/[2kyyl /(k33po) P — 1"k, /K.
The relationship between A and u" given by Egs.
(55)—(57) has been calculated numerically using the same
values of the physical parameters used in Fig. 2. The re-
sult is shown in Fig. 3. We notice that, in the limit
Y — 0, Eq. (56) leads to nearly the same result as that re-
ported in Refs. [9] and [11]. However, in the limit ¥ —0,
we have
u"_>2\/k§2/k1,k33h+| . (60)
0
Equation (60) shows that, for a HN cell and TN cells,
u"'—0 because |py| — 0, and for a SBE cell, u"" follows
Eq. (60) for the value of I/|p,| given. This differs from
the result that the saturation voltage vanished as some
value of A, as reported in Refs. [9] and [11]. The present
theory is therefore the only one which leads to the natu-
ral conclusion that decreasing the anchoring strength
reduces the saturation field and that the free anchoring
limit (i.e., 4 =0) gives a zero saturation field for HN and
TN cells and a constant value for a SBE cell. The
significance of the ratio of k,, /k;; in a TCN cell is ap-
parent from Egs. (56) and (60). It is clear from Eq. (56)
that the saturation field for a HN cell is always larger
than that for a TN cell. It can be deduced from Egs. (43)
and (56) that for typical values of //p, and the elastic
constant ratios the u'(A) and #''(A) curves always inter-
sect, as shown in Figs. 2 and 3. For a weak anchoring
condition with A larger than the value of A at the point of

3 e e
Kao/k11=0.6
Kavkpi=1.5 )
i 6=311/2 (/p,=0.7) ]|
2+ —
= =0 (Upo=0)
1 ]
L Becker et al. / ]
b (¢=7/2, 1/p,=0)
0 oo b N
0 1 2 3

A

FIG. 3. The A dependence of the reduced saturation fields
(u'") for homogeneous nematic, twisted nematic, and supertwist
birefringent effects cells. This shows the present theoretical re-
sults and those reported in Ref. [11]. The material parameters
used in the calculation are k33 /k;;=1.5 and k,, /k;; =0.6.

intersection, a LC cell has a bistable property discussed
in Refs. [9] and [11]. More detailed consideration of this
property may help us in the design of a SBE cell with a
weak anchoring.

Finally, we discuss the saturation property for strong
anchoring. The saturation threshold field for strong an-
choring has been predicted theoretically [8] and is ob-
served experimentally [15]. In the limit of 4 — «, Egs.
(54) and (55) lead to Z — o and then Y — oo. As a result,
Eq. (57) gives the condition of $°—0 for strong anchor-
ing. On the other hand, strong anchoring leads to
B°— /2 with Eq. (51). Then the result of 8°—0 is found.
Both results of $°—0 and 8°—0 are reasonable condi-
tions for strong anchoring.

VI. CONCLUSION

In keeping with the model of Rapini and Papoular, we
have made a rigorous analysis of weak boundary cou-
pling effects for nematic liquid crystals. Instead of using
two different anchoring strengths, polar and azimuthal,
we only need a single anchoring strength A in the deriva-
tion of the threshold field and the saturation field. Calcu-
lations of the director configuration for NLC cells with
different surface anchoring conditions and external fields
become much easier. A variational calculation method
for the two-dimensional problem introduced in this paper
may allow us to minimize the total free energy, which is
the sum of the bulk energy and the surface energy for a
two-dimensional deformation. This may be significant in
the development of LC display devices.
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